Abstract

We present an overview of the first combinatorial results for the so-called geometric RAC simultaneous drawing problem, i.e., a combination of problems on geometric RAC drawings [3] and geometric simultaneous graph drawings [1].

The GRACSim Problem

The geometric RAC simultaneous drawing problem (or GRACSim, for short) is stated as follows: Given two planar graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ with $E_1 \cap E_2 = \emptyset$, place their vertices on the plane so that, when the edges are drawn as straight-lines:

i. each graph is drawn planar
ii. there are no edge overlaps
iii. crossings between edges in E_1 and E_2 occur at right-angles.

A Cycle and a Matching: A Positive Result

Theorem. A cycle C and a matching M always admit a GRACSim drawing on an $(n + 2) \times (n + 2)$ integer grid. Moreover, the drawing can be computed in linear time.

If we remove an edge from C, the remaining graph is a path P.

Identify in $P \cup M$ a cycle collection that contains half of P's edges and all of M's edges and draw it in a snake-like fashion.

Add the remaining edges of P and move each even-indexed vertex of P one unit to the right.

Merge consecutive columns that do not interfere in y-direction into a common column.

Add the removed edge of C.

A Wheel and a Cycle: A Negative Result

Since Cabello et al. [2] have shown that a geometric simultaneous drawing of a wheel and a cycle always exists, the theorem mentioned above implies that if two graphs always admit a geometric simultaneous drawing, it is not necessary that they also admit a GRACSim drawing.

According to the GDual-GRACSim drawing problem, we are given a planar embedded graph G and the main task is to determine a geometric drawing of G and its dual $G^∗$ (without the face-vertex corresponding to the external face) such that:

i. G and $G^∗$ are drawn planar
ii. each vertex of $G^∗$ is drawn inside its corresponding face of G
iii. the primal-dual edge crossings form right-angles.

Theorem. Given a planar embedded graph G, a GDual-GRACSim drawing of G and its dual $G^∗$ does not always exist.

A graph that is a subdivision of a triconnected graph and it has two planar combinatorial embeddings.

In order to have a RAC drawing of G and $G^∗$ both $uvvw$ and $uvv’x$ must be convex, which is impossible.

Theorem. Given an outerplane embedding of an outerplanar graph G, it is always possible to determine a GDual-GRACSim drawing of G and its dual $G^∗$.

References

This work has been funded by the Operational Programme on Education and Lifelong Learning (Action Hrkiletois-II) which is co-financed by Greece and the European Union (European Social Fund NSRF 2007-2013).

Mail: {fargyriou, mikebekos, symvonis}@math.ntua.gr, mk@informatik.uni-tuebingen.de