SArTagnan

Description of the parallel solver SArTagnan submitted for the SAT-Race 2010
Stephan Kottler

Eberhard Karls Universität Tübingen, Germany
kottlers@informatik.uni-tuebingen.de

Brief overview of SArTagnan

SArTagnan is a new parallel SAT-solver that runs different algorithms and search strategies on different threads. The solver is implemented in C++ using OpenMP and was submitted as 64-bit binary version.

Clause sharing All threads are allowed to share clauses [3, 14, 7] logically and physically. However, the set of clauses of different threads may differ and not all clauses have to be shared. One criterion to decide on which clauses to share is the LBD value [1]. All sharing is generally realised without mutex locks of the operating system.

Different strategies Most threads use CDCL [11] with the VSIDS heuristic [12] for variables [4], Luby restarts [10] and phase-saving [13]. However, three threads use geometric restarts and one thread uses activity values for literals as in the original VSIDS heuristic [12]. Most threads apply lazy hyper binary resolution as proposed in [2].

Sharing clauses physically allows for easily sharing different kinds of information among several threads. E.g. if one thread detects a clause for “on the fly improvement” [8] all threads may profit from this immediately. In this spirit two threads (when run with 8 threads) mainly attempt to improve the clause set for the other solvers:

One thread uses reference points for decision making (DMRP) as proposed in [5, 6] and similar to [9]. It frequently computes a reference point which attempts to reflect the search direction of several solvers: This is done by choosing the predominant assignment values of all solvers for the reference point. Subsequently the DMRP thread focuses on the set of clauses that are not fulfilled by this reference point. Considering these clauses for decision making often allows for learning valuable lemmata.
Another thread tries to simplify the clause database by eliminating or replacing variables. It also performs subsumption and backward subsumption checks and searches for autarkies.

References


